

Figure 1. Example of wiring diagram for connecting solar cell, capacitor, and LED with the power management board.

PARAMETER	MIN	TYP	MAX	UNIT
BOOST CONVERTER \ CHARGER STAGE				
DC input voltage	130		3000	mV
Peak Current flowing from the input		200	300	mA
Input power range for normal charging	0.01		300	mW
Cold-start Voltage. Input voltage that will start charging		600	700	mV
Minimum cold-start input power to start normal charging		15		μW
Voltage when cold start operation ends and normal charger operation begins	1.6	1.77	1.95	V
Boost converter mode switching frequency			1	MHz
BATTERY MANAGEMENT				
Quiescent current charger shutdown in under-voltage (UV) condition		330	750	nA
Quiescent current charger shutdown in overvoltage (OV) condition		570	1400	nA
Programmable voltage (VBAT_OV)range for overvoltage threshold	2.5	3.1*	5.25	V
(Battery voltage is rising)				
Programmable voltage (VBAT_UV)range for under-voltage threshold (Battery	2.2		VBAT	V
voltage is falling)			_OV	
BIAS and MPPT CONTROL STAGE				
Sampling period of VIN_DC open circuit voltage		16		S
Sampling period of VIN_DC open circuit voltage		256		ms
Regulation of VIN_DC during charging	-10%		+10%	
Voltage node which is used as a reference for the	1.21	1.25	1.27	V
programmable voltage thresholds				
-				

 Table1. Electrical characteristics of the power management board

Default output voltage is set to VBAT_OV = 3.1 V and VBAT_UV = 2.2 V

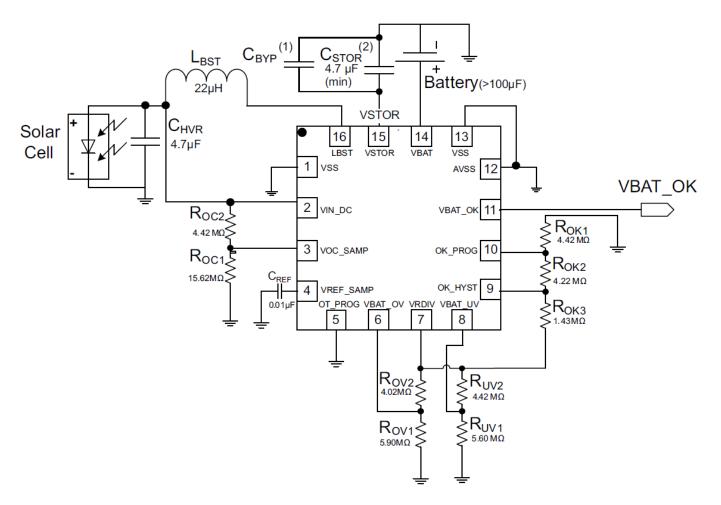


Figure 2. Schematic diagram of the circuit board.

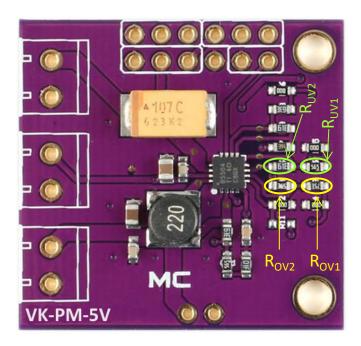


Figure 3. Output voltage VBAT_OV and VBAT_UV controlling resistor locations.

The factory set output voltage of the power management board is 3.1 V. If you wish to change it to a different value please use Table 2 and Table 3 to calculate new replacement resistor values.

VBAT_OV = maximum charging voltage of the battery.

VBAT_UV = under-voltage threshold voltage.(Automatically stops charging the battery if boost converter output goes below this voltage)

Desired Max Charging Voltage (V)	R _{OV1}		R _{OV2}		
(VBAT_OV)	Value (MΩ)	Code on Resistor	Value (MΩ)	Code on Resistor	
2.5	7.5	85E	2.49	39E	
3.3	5.62	73E	4.32	62E	
4.2	4.42	63E	5.49	72E	
5.0	3.74	56E	6.19	77E	

Table 2. Example of R_{OV1} and R_{OV2} resistor values (and codes on SMD part) for the most common output voltages.

Table 3. Example of R_{UV1} and R_{UV2} resistor values (and codes on SMD part) for some selected under-voltage threshold voltages.

Desired Under Voltage Threshold	R _{UV1}		R _{UV2}		
Voltage (V) (VBAT_UV)	Value (MΩ)	Code on Resistor	Value (MΩ)	Code on Resistor	
2.2	5.62	73E	4.32	62E	
3.0	4.12	60E	5.9	75E	
3.6	3.48	53E	6.49	79E	
4.5	2.8	44E	7.15	83E	

This section only for advanced users. Pin names and function of 12 pin connector

The Power Management Board is equipped with a twelve pin connector for control and monitoring purposes. The name of each pin is shown in Figure 4 and an explanation of each pin is given in Table 4.

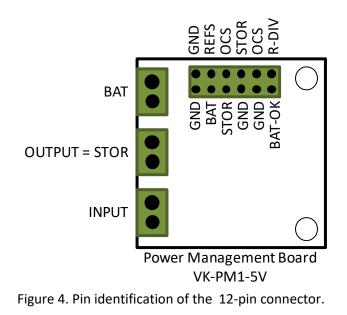


Table 4. Description of pins in 12 pin connector.

Pin Name	Function Description		
GND	General ground connection for the device		
BAT	The positive terminal of rechargeable storage (capacitor or Battery)		
STOR	Connection for the output of the boost charger, which is typically connected to the system load.		
BAT-OK	Digital output for battery good indicator. Internally referenced to the VSTOR voltage.		
R-DIV	The middle point of R_{OC1} and R_{OC2} resistor divider. This pin should connect to OCS pin to enable		
	the MPPT function.		
OCS	This is the VOC_SAMP pin of the main IC. Sampling pin for MPPT network. Connect to the R-DIV		
	for setting the MPP threshold voltage which will be stored on the REFS pin. To disable the MPPT		
	sampling circuit, connect to STOR pin.		
REFS VREF_SAMP pin of the main IC. INPUT voltage will be regulated according to this pin			
	voltage is provided by the MPPT sample circuit. When MPPT is disabled, either use an external		
	voltage source to provide this voltage or tie this pin to GND to disable input voltage regulation		
	(i.e. operate from a low impedance power supply).		

If you need more information, please contact Viraj without hesitation.

Email: viraj@spd-lab.com or virajjayaweera@gmail.com

Tel: +81-90-3835-0788 (Line, Viber, WhatsApp also available)

SPD Laboratory, Inc.

2-35-1 Johoku, Hamamatsu, 432-8011, JAPAN Tel: +81-53-474-7901 Fax: +81-53-401-7080 Email: <u>inq@spd-lab.com</u> Web: <u>http://www.spdlab.com/English/VK-PM-5V.html</u>